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Some Key Issues for CO2 Storage 
in Deep Saline Aquifers

• What fraction of the pore space can be filled with CO2?
• How big will the CO2 plume be?
• How much CO2 will be dissolved?
• How much will capillary trapping immobilize CO2?
• Can accurate models be developed to predict CO2 fate and 

transport?

Courtesy of Christine Doughty, LBNL

Answering these questions depends on the complex 
interplay of viscous, capillary, buoyancy forces and 
heterogeneity and structure on CO2 plume migration.
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Core-flood Set-Up for Relative Permeability 
Measurements

*Brine composition: CO2 saturated brine with 0.5 molar potassium iodide
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Core-Scale Imaging of CO2 Distributions
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CT Scans Measure Core Porosity
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Calculation of Permeability
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Core Permeability Distribution
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Laboratory Injections of Various 
CO2-Brine Proportions

• Experimental Setup:
5%, 10%, 20%, 50%, 80%, 90%, 100% CO2 injections

3mL/min constant flow-rate

6.89MPa constant back-pressure

16 ±2°C lab temperature

Brine contains dissolved CO2

CO2 contains dissolved water

• Measure CO2 Saturation with CT Scanner
Digitally reconstruct image



Relative Permeability Curves
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Small-scale CO2 Saturation Variations 

5% CO2 10% CO2

20% CO2 50% CO2 80% CO2

90% CO2 100% CO2

CO2 Saturation:
0% 100%50% 75%25%

Sub-corescale saturation variations generally overlooked in relative 
permeability measurements.



Simulated Injection of Various CO2-
Brine Proportions

• Simulation Cases
10%, 90%, 100% CO2 injections

3mL/min constant flow-rate

6.89MPa constant back-pressure

16°C constant temperature

Brine contains dissolved CO2

CO2 contains dissolved water 

• Core Characterization
Porosity/permeability “map”
coarsened

Relative permeability/capillary 
pressure 
curves matched to experimental 
curves 

• TOUGH2 (Pruess, LBNL)
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Homogeneous Simulations
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90%
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100%
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Variable Φ, k Simulations

CO2 Saturation:0% 70%

Simulated CO2 Saturations
Constant Pc Produces Homogeneous CO2 Saturations

PorosityLab Data



Fitting Capillary Pressure Curve
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10%
CO2

90%
CO2

100%
CO2

Variable Φ, k Simulations

CO2 Saturation:0% 70%

Lab Data

Simulated CO2 Saturations
Variable Pc Produces Small-scale CO2 Saturation Variations

Variable Pc Simulations



Capillary Pressure Curve
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Why should we care?



Why Should We Care?

Average CO2 saturation is:

‣ Decreased by sub-corescale heterogeneity

‣ Flow-rate dependent

‣ Affected by simulation grid resolution



Subcore-scale Heterogeneity 
Decreases CO2 Saturation

0 7.84.02.0 6.0
Length Along Core (cm)

C
O

2
S

at
ur

at
io

n

100% CO100% CO22

InjectionInjection

90% CO90% CO22

InjectionInjection

10% CO10% CO22

InjectionInjection



Effects of Flow Rate on CO2 Saturation
90% CO2 Injection Simulation
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Capillary Pressure Distribution at Different Flow Rates
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Capillary Pressure Curves:
Average: ϕ=0.22 k=206mD 
Upper Bound: ϕ=0.12 k=35.7mD
Lower Bound: ϕ=0.25 k=444mD

9 mL/min
3 mL/min
0.3 mL/min
0.065 mL/min
0.03 mL/min
0.01mL/min

Brine Saturation



90% CO2, 10% Brine Injection
Variable Simulation Resolutions

Grid Size: 0.6x0.6x3mm
Grid Count: 67,350 

CO2 Saturation:

0% 55%30%

Grid Size: 1x1x3mm
Grid Count: 23,400 

Grid Size: 2x2x3mm
Grid Count: 5,400 



Finer Simulation Grids Decrease CO2 Saturation 
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Conclusions

• Core-scale multi-phase flow experiments reveal strong influence of 
sub core-scale heterogeneity

• Spatial variations in capillary pressure behavior control CO2
saturations

• CO2 saturation:
– Decreases due to bypass of low porosity regions
– Decreases at lower flow rates
– Predictions depend on grid size

• Similar phenomena are expected at all spatial scales
• Fundamental research needed to improve model predictions

– Fundamental process understanding based on lab and field experiments
– Up-scaling strategies that accurately include the effects of sub-grid scale 

heterogeneity
– Calibration and validation of predictive models


